Characterization of 3D interconnected microstructural network in mixed ionic and electronic conducting ceramic composites.

نویسندگان

  • William M Harris
  • Kyle S Brinkman
  • Ye Lin
  • Dong Su
  • Alex P Cocco
  • Arata Nakajo
  • Matthew B DeGostin
  • Yu-chen Karen Chen-Wiegart
  • Jun Wang
  • Fanglin Chen
  • Yong S Chu
  • Wilson K S Chiu
چکیده

The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation, characterization and stability of Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic with NASICON-type structure

A conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using differential scanning calorimetry (DSC), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and AC impedance techniqu...

متن کامل

Anomaly Detection and Microstructure Characterization in Fiber Reinforced Ceramic Matrix Composites

ANOMALY DETECTION AND MICROSTRUCTURE CHARACTERIZATION IN FIBER REINFORCED CERAMIC MATRIX COMPOSITES Name: Bricker, Stephen E. University of Dayton Advisor: Dr. Russell Hardie Ceramic matrix composites (CMCs) have the potential to replace current superalloys being used in hot components of jet engines. CMCs with continuous fiber reinforcement exhibit significant strength retention beyond tempera...

متن کامل

Ballistic Testing and Simulation of Co-continuous Ceramic Composite for Body Armour

Co-Continuous Ceramic Composites, referred to as C4, have bi-continuous, interconnected and interpenetrating phases of a metal and ceramic. This bestows such composites with a higher strength to weight ratio compared with traditional composites. In this research work, a C4 composite of AA5083/SiC is fabricated for personal body armour, using gravity infiltration technique. A numerical simulatio...

متن کامل

Oxygen permeable ceramic membranes for hydrocarbon conversion reactors

Because of their various potential applications, non-porous, selective oxygen permeable ceramic membranes with mixed ionic and electronic conductivity (MIECs) have received significant interest over the past decade [1-8]. In particular, the incorporation of these materials into catalytic reactors for the oxidation of hydrocarbons is being investigated as a way to eliminate costly air separation...

متن کامل

Prediction of the functional properties of ceramic materials from composition using artificial neural networks

We describe the development of artificial neural networks (ANN) for the prediction of the properties of ceramic materials. The ceramics studied here include polycrystalline, inorganic, non-metallic materials and are investigated on the basis of their dielectric and ionic properties. Dielectric materials are of interest in telecommunication applications where they are used in tuning and filterin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 9  شماره 

صفحات  -

تاریخ انتشار 2014